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EM Image of Sample for Experiment 

Mainly ~ 80 nm x 20 nm randomly oriented  
metal rods on a SiN substrate 
 
DKS and J C H Spence et al.. PRL 106, 115501 (2011). 



Information In Angular Correlations 

Diffraction pattern from disordered subunits 
Appears to have no angular structure,  
only radial variation, studied by SAXS. 
However there is untapped information in the 
angular correlations, revealed by evaluating 

{ }{ }
DPj

saxsjsaxsj qIqIqIqI
N

qqC ∑ −Δ+−=Δ )'(),'()(),(1),';(2 ϕϕϕϕ
ϕ



ΔΦ 

C2(ΔΦ) 
I(Φ)  

Extraction of Structure from Diffraction 
Patterns of Randomly Oriented Particles 
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Method applicable even for Multiple 
Particles in Radom Orientations 
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Reconstructing the  
Single-Particle Diffraction Pattern 
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Circular Harmonic Expansion 

The reality of I(q) ensures that I-m(q)=Im(q). For a flat Ewald sphere,  
Friedel’s rule, I(-q)=I(q), will be satisfied if only even m’s contribute. 
 
If the single particle diffraction pattern has a mirror line, can choose  
the Im(q) to be real. 
 
Saldin et al., New J. Phys. 12, 035014 (2010) 



Relation to Scattered Amplitudes 
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By performing the sums over amplitudes we are assuming coherent scattering 
amongst the different particles 



Pair Correlations in Terms of 
Amplitudes 
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Note that the average over DPs removes all dependence on the position of the  
particles, despite the fact that coherent scattering was assumed 
(only the diagonal terms in the sums over the particles survive) 

The correlations depend only on the single-particle quantities IM(q) 



Recover IM(q) from C2: Diffraction 
Pattern of Single Particle from that 
of Multiple Particles 

•  Take FT of C2(q,q’;ΔΦ): 

     
 
•  Find IM(q) from BM(q,q’) 

•  Can be done 

C2 (q,q ';Δφ)exp(−iΔφ)dΔφ = IM (q)IM (q ')∫ = BM (q,q ')



1 particle 

2 particles, 1000 DPs 10 particles, 1000 DPs 

Simulated Pair Correlations 



Science of STC 

§  An X-Ray Free Electron Laser (XFEL) produces X-rays some 
1010 times more brilliant that even the most brilliant 
synchrotron surces 

§  Rate limiting step of X-ray crystallography is often the 
ability to crystallize samples 

§  With some samples, e.g. membrane proteins, crystallization 
may not be possible at all 

§  Since a typical crystal used in X-ray crystallography has 
perhaps 1012 molecules, it is speculated that XFEL X-rays 
may be bright enough for structure determination from an 
individual molecules 

§  Molecules provided to the beam in a liquid jet to simulate 
their aqueous environment in nature, or else as nebulized 
single molecules  



Aerosol Injector for XFEL 



Science of STC 

§  Serious problem is radiation damage 
§  X-ray produced in pulses some tens of fs 

in duration 
§  Concept of “diffraction before destruction”  
§  Possibly a complete solution to radiation 

damage problem 



Extension to General 3D Rotations 

I 0( ) q( ) = ILM q( )YLM
q( )

LM
∑

3D intensity in (X,Y,Z) coordinate system 

2D intensity on red Ewald sphere S1 

I 0( ) q,φ( ) = ILM q( )YLM π 2− sin−1 q / 2κ( ),φ( )
LM
∑

I α;q,φ( ) = DLMM ' α( ) q( )Ylm ' π 2− sin−1 q / 2κ( ),φ( )
LMM '
∑

2D intensity on blue Ewald sphere S2 
rotated by Euler angles (Φ,θ,Ψ)≡α, say 

J. Phys.: Condens. Matter 21, 134014 (2009) 



Input to algorithm 

Angular correlations 

C2 q,q ';Δφ( ) = I q,φ( ) I q ',φ +Δφ( )dφ∫ DP

between two pixels 
on each DP p, but  
summed over all  
N DPs. 
 
Note neither the  
magnitudes nor number 
of such quantities grows 
with the number of DPs 
measured. The correlations just  
becomemore accurate as  
N increases. 

If the scattering 
angle is 2ζ, q=2κsinζ 

q q’ 
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DP k 



Particles Randomly Oriented in 3D 
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This is an orientation-independent quantity characteristic of the 
“diffraction volume” of an individual particle 



Extracting Structure from Correlations 

BL q,q '( ) = ILM
* q( )

M
∑ ILM q '( )

If it were possible to extract ILM(q) from BL(q,q’), possible to  
construct 3D diffraction volume via 

Is a quadratic equation for ILM(q) with an extra summation  
over m on RHS. However, solutions exist for symmetric objects like  
Icosahedral or helical viruses 

I q( ) = ILM q( )
LM
∑ YLM Ω( )

However, this is difficult to do since 



Diffraction Volume from the 
Measured BL(q,q’)’s 

§  How does one extract the ILM(q) coefficients 
from the BL(q,q’) ones? 

§  Caspar and Klug (1962) suggested that 
regular viruses were probably either 
icosahedral or helical 

§  For both these symmetries it is possible to 
reconstruct the diffraction volume from the 
measured BL(q,q’)’s up to a certain 
resolution 



Reconstructing the Diffraction 
Volume 

Once both the magnitudes and signs of the real coeffs. 
gl(q) are determined, one can reconstruct one shell of the 
diffraction volume. The signs of the gL(q’) of the other shells 
q’ may be determined uniquely from an analysis of the cross 
pair correlations which yield the quantities 

BL q,q '( ) = gL q( )gL q '( )

Thus, once the gl(q)’s of a particular shell have been determined 
the gl(q’)’s of all other shells may be determined directly. Then the  
3D diffraction volume may be reconstructed via 

I q,Ω( ) = gL q( )
L
∑ ℑL Ω( )

Note that since the icosahedral harmonics (by definition) have  
icosahedral symmetry, so must the 3D diffraction volume. 



Recovery of 3D image of STNV 

Capsid Viewed Down the 5-Fold 
Axis 

Computational slice showing  
hollow nature of virus capsid 

lmax=30 
13 Å resl. 
for STNV 

DKS et al., Optics Express 19, 17318-17335 (2011) 



Reconstructed Image of 
Icosahedral Virus 

DKS et al., Opt. Express … and arXiv … 



Virus Reconstruction from 
Chlorella Virus (Simulation) 

Paramecium Bursaria Chlorella Virus 
               Diameter ~ 1900 A 



Helical Virus: Tobacco Mosaic 
Virus (TMV) 

First virus discovered. Electron micrograph of TMV particles  
stained to enhance visibility at 160,000x magnification 



Finding the I’s from the B’s and Alignment by 
Computational Postprocessing 

BL q,q '( ) = ILM
* q( )

M
∑ ILM q '( )

Extracting the ILM(q)’s from the BL(q,q’) is possible for icosahedral 
structures because the ratios of the coeffs. of different m’s for the same 
l’s are known. In the case of a helical structure one may exploit the fact 
that if the z axis is taken as the helix axis, only the m=0 components are 
non zero up to a resolution of about d=2π/qmax,where qmax=48/100 ≅ 0.5 
Å-1 (Cochran, Crick, and Vand, 1952). Thus d ≅	
 12 Å. Up to this 
resolution                               and the signs may be determined by e.g. 
optimizing the triple correlations. Note that              is an orientation-
independent quantity. The expansion coefficients           require the 
definition of an orientation. Since any orientation is consistent 
with            , can choose this axis arbitrarily. Choosing a common z-axis 
for all molecules is equivalent to alignment by computational 
postprocessing. 

As before, structural information is contained in 

IL0 q( ) = BL q,q( )
BL q,q( )

ILM q( )

Bl q,q( )



Simulations 

We have tested this idea by constructing the BL(q,q) and  
TL(q,q) coefficients using known spherical harmonic  
expansion coefficients ILM(q) of the 3D diffraction volume of 
TMV. We then assumed only BL(q,q) and TL(q,q) coefficients  
are known (these are the quantities that may be recovered  
directly from many diffraction patterns of randomly oriented 
particles, as measurable in a “diffract-and-destroy” type 
experiment with an XFEL) and recovered the IL0(q) coefficients 
from them. We then reconstructed the diffraction volume via 

I q( ) = IL0 q( )
L
∑ YL0 Ω( )

and the real-space structure via an iterative phasing algorithm. 
The result is shown next. 



Reconstructed Helix Diffraction Pattern 

Layer Lines 



Reconstructed Image of TMV 

Image from reconstructed diffraction volume. Shows the helical 
grooves of tobacco mosaic virus (TMV) at low resolution, since 
m=0 (Cochran, Crick, & Vand, 1952).  



Alignment by Postprocessing, “Fiber 
Diffraction Without Fibers” 

Not necessary to perform alignment experimentally via a powerful  
electric field or flow alignment etc.  Can be done by  
postprocessing DPs of randomly oriented particles. A fiber  
diffraction pattern is just a slice through this 3D diffraction  
volume parallel to the helix axis. Possible to generate a fiber  
diffraction pattern by postprocessing diffraction patterns of  
random orientations, as measured in an XFEL experiment. Note  
this will completely eliminate the need to perform “single-axis  
alignment” experimentally. 
 
If a fiber diffraction pattern may be found by these means, 
possible to do “fiber diffraction without fibers”! 
[H.-C. Poon, P. Schwander, M. Uddin, and D. K. Saldin,  
Phys. Rev. Lett. 110, 265505 (2013) (cover picture, same issue)] 
 
See also Synopsis, “No need to line up”, M. Rini, Physics,  
June 27, 2013 



Summary of Algorithm 

•  Method works on scattering data from multiple particles  
    randomly orientated in droplet – better hit rate in experiment,  
    due to scattering many particles, MPC can  increase by orders  
    of magnitude 
•  Works on DPs from multiple particles in random orientations,  
    no need to exclude DPs from multiple particle hits – increases  
    “hit rate” 
•  From the angular correlations of the data, the diffraction  
     volume  I(qx,qy,qz) of an individual molecule in an arbitrary  
     orientation may be found 
•  This achieves molecular alignment computationally 
•  Electron density of virus reconstructed from oversampled  
     intensities of a single particle by an iterative phasing  
     algorithm 
•  Solutions possible for the two most common virus types of  
    regular virus: icosahedral and helical 



Poisson Noise and  
Mean of Correlations 
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Poisson distribution P(n,λ): probability of measured count of n, mean λ. 

Mean count  

Mean value of product of two variables with individual means λ1 and λ2: 

Mean of products of counts, nm = product of individual means, λ1λ2. 



Noisy PYP Diffraction Patterns 



Conclusions 

§  One key to getting structural information from an XFEL is to realize 
that nothing moves in a femtosecond, so that even if a sample is 
destroyed by an XFEL beam diffraction patterns are measured 
before the destruction “diffract and destroy” 

§  Note that this is potentially a complete solution to the radiation 
damage problem 

§  We can also exploit the fact that the pulse repetition rate of an XFEL 
is great, so possible to measure perhaps 100 DPs per second 

§  Can measure perhaps a million DPs during a single experiment 
§  The question is whether it is possible to analyze such a large 

number of such weak DPs to retrieve 3D structural information 
§  This requires great computer power and the development of brand 

new algorithms that can extract structural information from a large 
number of very weak diffraction patterns 

§  We have described one such idea for recovering time-resolved 
structural changes of uncrystallized biomolecules in solution 



Elasped Time: Δt 
Distance Traveled by Light: ΔL  

Δt=1/2000 s 
ΔL=100 mi. 
~ Distance  
NYC-PHL 

Δt=1 s 
ΔL=186,000 mi 
~ Distance to the moon. 

Speed of Light 



Pump-probe for Time Resolution 

v= 10 m/s 
Δt=2 ms 
ΔL=2 cm 
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General Theory for Small 
Structural Changes 

I q( ) = A* q( ) A q( )

Multiply both sides by YLM
* q̂( ) and integrate wrt q̂



Small Structural Changes 
(Cont.) 
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Cis-Trans Isomerization of the Chromophore  
(with accompanying movement of nearby ARG) 



Changes in two Widely Separated 
Residues (ARG 52 and PHE 121) 



Multiple Particles, Coherent Scattering 
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This is an orientation-independent quantity characteristic of the 
“diffraction volume” of an individual particle 

Term with uncorrelated orientations tends to a constant. Correlated term  
is; 

( ) ( )κπ
θ 2/sin

2
1 qq −−=θ” is the angle between and 



Pair correlations with Multiple 
Particles vs. Single Particles 



Effect of Variation of Number 
Of Particles Illuminated 

CH4+ARG52 Posson distribution of  
Particle number 

CH4+PHE121 



Feasible Beam Cross-Section 
(Spring-8) 

X-ray nanobeam developed at Spring-8 using the X-ray light-collecting  
Optical system. X-ray beams of 7 nm diameter were generated (Sping-8  
web site). 



Poisson Noise and  
Mean of Correlations 
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Poisson distribution P(n,λ): probability of measured count of n, mean λ. 

Mean count  

Mean value of product of two variables with individual means λ1 and λ2: 

Mean of products of counts, nm = product of individual means, λ1λ2. 



Noisy PYP Diffraction Patterns 



Problems with Obtaining Small Structural  
Differences from Multiple Particles 

•  When number of particles is large,  
    N times as many off-diagonal terms 
    (which do not carry structural info) as 
    particle-diagonal terms (which do).  
•  Shot noise on these can be as large as 

large as signal 
•  Application to single particle overcomes  
    this problem 
•  Possible to get a 1-0 mask of particle  
    (with SA method (H. Liu et al, Acta  
    Cryst. A 69, 365 (2013), can use this  
    method to improve electron density 
    of entire protein 



Mask+Difference Density 



Sum Density 



Conclusions 

§  One key to getting structural information from an XFEL is to realize 
that nothing moves in a femtosecond, so that even if a sample is 
destroyed by an XFEL beam diffraction patterns are measured 
before the destruction: “diffract and destroy” 

§  Note that this is potentially a complete solution to the radiation 
damage problem 

§  We can also exploit the fact that the pulse repetition rate of an XFEL 
is great, so possible to measure perhaps 100 DPs per second 

§  Can measure perhaps a million DPs during a single experiment 
§  The question is whether it is possible to analyze such a large 

number of such weak DPs to retrieve 3D structural information 
§  This requires great computer power and the development of brand 

new algorithms that can extract structural information from a large 
number of very weak diffraction patterns 

§  We have described one such idea for recovering time-resolved 
structural changes of uncrystallized biomolecules in solution 
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