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Inelastic X-ray Scattering in the Synchrotron Era 

Courtesy of Ercan Alp (APS, ANL) 
Source: E. Burkel, Rep. Prog. Phys. 63, 171 (2000) 

Despite a long history, practical applications became possible only with the advent of 
highly brilliant and intense synchrotron sources, and the advancement of X-ray optics 

Development in meV spectrometer for lattice dynamics 

NSLS-II  
(>1021 ph/s/0.1%bw/mrad2/mm2) 

NSLS-II 
(~0.1 meV) 

Compton, Phys.Rev. 1923 



Outline 

 A Brief Introduction 
 Science and Applications under Extremes 

• Some recent examples of study under extreme P 

 IXS Capabilities of NSLS-II 
• Scientific opportunities at the IXS beamline 

 Summary 



Inelastic X-ray Scattering 
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 A photon-in photon-out probe with a rather weak scattering cross section 

 Coupling to matter 
 Coupled directly to the electronic charge 
 Lattice excitations via coherent scattering 

(equivalent to INS) 
 High penetration, truly bulk-sensitive 
 Element, charge and spin specific 
 Applicable to systems under extreme 

environments, and systems that are not 
compatible with vacuum (e.g., liquids) 
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 Kinematics Strengths 
 ħω and Q are effectively decoupled 
 (ħω, Q) covers the full range of dielectric 

response, limited only by achievable resolutions 
 
 



The Relevant Energy Scales 
E

ne
rg

y 

 1-1000 eV: 
Plasmon 
Exciton 
Valence & core  

excitations 
 
 
 0.1-1 eV: 
Magnon 
Orbiton 
 
 
 0.1-100 meV:  
Phonon 
Collective mode 

Exciton in carbon nanotube  
(S. Louie, Berkeley) 

Orbital excitation  
(M. Rotter, U. Wien) 

Phonon mode 
(Wikipedia) 

 Given the appropriate energy resolution, IXS can be utilized to study dynamic 
behaviors of materials in the relevant time scale (picoseconds ~ femtoseconds) 

http://upload.wikimedia.org/wikipedia/commons/2/27/Lattice_wave.svg


IXS Spectroscopic Information 
 Non-resonant IXS (XRS/XES/PFY-XAS) 

 Resonant IXS (RXES/PFY-XAS)  

NiO 

RIXS RXES 

NiO 
4p  1s 

fE

iE

fEiE

Lattice, spin, orbital and valence excitations 



Conventional Instrumentation for IXS 
- Spectrometer at BL12XU, SPring-8 

 NIXS Setup   RIXS Setup  

Sample 

Detector 

Analyzer 
X-rays 

Ei scanned 
Ef fixed 

Ei  Ef  Sample Detector 
Analyzer 

X-rays 

Ei fixed but stepped thru edge, Ef scanned 
CFS: Ei & Ef scanned together 

Ef  

Ei  

Ei 

Ei 



XES: Probing high-spin-low-spin 
transition in Fe compounds 

(Fe,Mg)SiO2 
Other related works: 

Badro et al, PRL 1999  

Badro et al, PRL 2002 

Li et al, PNAS 2004 
Badro et al, Science 2003 

Badro et al, Science 2004 

Lin et al, Science 2005 

Kb’ 

Kb1,3 

Nomura et al, Nature (2011) 
SPring-8 BL12XU 

Changes in Fe-Mg 
distribution coefficient 
as a function of 
pressure.  
 Implications for the 

lower mantle 



XRS: Molecular to Nonmolecular Transition 
in high-P CO2 

• Phase diagram of CO2 better understood in the 
nonmolecular region 

• XRS sensitive to bonding changes under 
pressure, and to coordination number in 
amorphous material.  S. Shieh, I. Jarrige, Y. Cai, et al, PNAS 2013 

- Performing soft XAS with hard x-rays 

ħ1= 9887 eV 
(9887-535) eV : O-K edge 
(9887-290) eV : C-K edge 
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Fiquet et al., Science (2001) 

Phonon Dispersion in 
hcp-Fe over 100 GPa 

Antonangeli et al., EPSL (2004) 

BSM M 
x-rays 

Si 111 

Si 111 

mirror 

analyzer 

detector 

W. Mao et al., JGR (2008) 

SPring8 BL35XU 

ESRF 

Courtesy of Dave Mao 



Limitations of Current IXS Instruments 
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IXS Beamline Overview 

19m 

37m 

58m 
68m 

 Scientific Interests 
 Ultrafast dynamics in liquids, soft matter, and biological systems 
 Phonons in single crystals, surfaces, interfaces and systems under extreme conditions 

Ultimate Goal:  
World-leading 0.1 meV energy resolution for studying dynamics  

 Designed to Achieve Best-in-Class Performance for IXS :  
 Angular dispersive crystal optics for cutting-edge resolution (0.1 ~ 1 meV) with sharper tails 

in resolution function and high Q resolution (0.1 nm-1). 
 Medium operation energy (9.1 keV) capitalizing on NSLS-II’s strengths in flux and brightness 
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NSLS-II 

“Filling in the Gap” 



What do we gain with higher resolution 
in E and Q?  
 Better defined energy position 

 Viscoelastic transitions in liquids/glasses 
 Phonon dispersion curves in crystals 

 Better defined line width 
 Dynamical heterogeneities in glasses 
 Phonon lifetime 

 

Masciovecchio et al., Phys. Rev. Lett. 97, 035501 (2006) 

? 

SiO2: Change in acoustic damping @  0.01meV < E < 1meV 
                                                          0.1nm-1< Q < 1nm-1 
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Fioretto et al., Phys. Rev. E (1999) 

IUVS: ΔE~ 0.014 meV 



Spectral Contrast Matters 
 Better defined line shape 

 Transverse mode 
 Biological systems (lipid membranes)  
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 E=1.5 meV; 1x1
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 E=1.5 meV; 3x3

Dispersive 
optics at 
same 1.5 

meV 
resolution 

Spherical back 
reflection 

optics at 1.5 
meV resolution 

Liu and Chen, et al. 

APS 30-ID, E = 23.724 keV, ΔE = 1.5 meV 

Phonon-like low-energy excitations 

Phonon modes @  E ~ 10 meV 
                           Q ~ 10 nm-1 

 0.1 meV gives access to ps time window 
 MD simulations to 100 ps  
 Tests of force field models 



100 101 102

The Relevant Length Scales 
 Better Q resolution allows access to the mesoscopic 

length scale (5 ~ 50 nm, part of “no-man’s land”) 
 Fast dynamics of bio-molecular systems 
 Phonons in functional nanoparticle assemblies 
 Intermediate regime in disordered systems 
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Beamline Design 

Hutch A  

(FOE) 

Hutch B  

(High-Resolution Optics) 

Hutch C  

(Optics Development) 

Hutch D  

(IXS Endstation) 

 Be-CRLs for ~1:1 focusing at SSA (Vertical beam size ~30 µm FWHM, critical for 0.1 meV 
with CDDW scheme) 

 HRM: inline 4B design (base line scope) for 1 meV, room for upgrade to 0.1 meV. 
 KB Mirrors: large demagnification with bendable plane ellipse figure for fine focus on sample 
 High-resolution optics test station: support continuing development towards 0.1 meV. 

DCM HRM 
High-Resolution 

Optics Test Station KB mirrors 
1-meV 

Spectrometer SSA Sample 

ID-10 

Control/User 

Area 

Front-End Beamline 



Asymmetric Back Scattering Optics 

ΔE of CDW ΔE of CDDW Θe (= 90˚ – φ) Length of D 
2 meV 1 meV 4.5˚ 120 mm 

0.7 meV 0.3 meV 1.5˚ 380 mm 

0.2 meV 0.1 meV 0.4˚ 1400 mm! 

 Major parameters determined and verified for  
E = 9.13 keV, Δθe = 5 µrad, and h = 0.5 mm 

 Proposed by Shvyd’ko (2004, PRL 2006) 
 Based on angular dispersion effect in asymmetric Bragg reflections. 
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 Angular acceptance ~100 µrad 
 High peak reflectivity ~40% 
 Sharp tails (multiple reflections 

and anomalous transmission) 
 Sub-meV resolution at ~10 keV 4-bounce 
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 Achieved the initial goal of sub 1 meV resolution. Key performance 
parameters demonstrated include: 

- CDW analyzer (de-convoluted) resolution  < 0.7 meV, 
- 4B-CDW combined resolution 0.8 meV,  
- 4B-HRM efficiency ~ 30%,  

CDW analyzer efficiency ~ 20% 
- Sharp Gaussian-like tails to ~2 orders of  

magnitude 
 

High-Resolution Crystal Optics R&D 

CDW analyzer 4B Mono 

4B-1 
4B-2 

CDW 

4B-CDW setup 

Energy Width  
= 0.8 meV 

4B energy scan 
repeatability:  

~0.2 meV 

(Cai et al, J. Phys.: Conf. Ser. 425, 202001; Keister et al, J. Phys.: Conf. Ser. 425, 052032)  



 Spectrometer arm scattering angle range: -7 to ~130 deg (QMAX ~ 80 nm-1) 

Sample Tower 

Spectrometer arm 

KB Mirrors 

Sample 

Huber 

1-meV Spectrometer 



 Support up to five analyzers, but only one analyzer will be built initially (base scope). 

 Q range limited to ~40 nm-1 initially for scattering angle < 60 deg due to polarization effects 
(need phase plate – future scope, and improvement on CDW analyzer)  

 Multilayer Collimating 

mirror(s) 
CDW Analyzer(s) 

KB Mirrors 

Sample 

Huber 

1-meV Spectrometer 



Detector 

CDW–Montel Mirror Analyzer    
 The use of CDW optics for analyzer requires collimation: ≤ 0.1x0.1 mrad2 

 Montel mirror designed to achieve comparable acceptance to spherical 
diced analyzers: Angular acceptance @ full illumination: ≥ 10x10 mrad2 

Montel mirror 

200mm 

1-2 mm 

~20 µm 

1.2 m 



Beamline Development Status 

DCM Shielded pipe HRM Diagnostics Optics table 

Spectrometer 

KB Mirrors Diagnostics Mask & 

Collimato

r 
 Components installation to be completed, tested and ready for beam Aug 2014. 

 Total technical commissioning time estimated: ~ 9 months (150 beam days),  
 Science Commissioning / User Experiments expected by June 2015 
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Facility 

(Beamline) 

ΔE 

(meV) 

ΔQ**  

(nm-1) 

E 

(keV) 

Iinc. @ E 

(photons/sec) 

Beam Size  

(V×H  µm2) 

Flux Density 

(photons/sec/µm2) 

Sharp 

Res. Tails 

ESRF (ID28) 1.6 0.5 21.7 6×109  7×12 7.1×107  -- 

APS (30-ID-C) 1.5 0.6 23.8 2×109  15×35 3.8×106 -- 

SPring-8 (43LXU) 1.5 0.5  21.7 ~5×1010 20×35 ~7.1×107  -- 

NSLS-II (IXS) 1.0 0.2 9.1 ~1.6×1010  (4B HRM)* 5×7 ~5×108 yes 

* Performance for a IVU22-3m at 500 mA (flux 8×1014 phs/sec/0.1% bw) and 30% spectral efficiency for the 4B monochromator. 

** Assuming 5 mrad acceptance angle. 

Initial Performance & Capabilities 

Sample Thickness 

(µm) 

ESRF ID28 

(cnts/sec) 

NSLS-II IXS 

(cnts/sec) 

v-SiO2 2100/190 ~0.2 ~0.2 

H2O (HP) 1000/1000 ~1.0 ~8 

La2CuO4 75.3/7.13 ~0.5 ~0.04 

Solid O2 10/10 ~1.5 ~2 

 Unique research strength for low-Z materials and high-pressure DAC systems (small beam 
size, highest flux density) 

Count Rate Estimates (single analyzer): 

(ESRF data courtesy of M. Krisch) 

Performance Comparison : 
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Scientific Opportunities 
Areas that may benefit from the improved resolution tails and higher Q 

resolution : 

 Anomalies in thermal and elastic properties in liquids and disordered 
systems 
o Relaxation dynamics in liquids in the supercooled phase. 

o Acoustic properties and dynamical heterogeneities in glasses  

 Dynamics of confined liquids 
o Material science, microfabrication, adhesion and lubricaton, biology, geology, 

nanoscience and nanotechnologies, including the development of hydrogen fuel cells 

 Phonon-like excitations in bio-materials and soft matters 
o Important for understanding some biological functions (e.g., phonon-assisted transport  

of molecules across lipid bilayers) 

Areas that may benefit from the excellent beam size and flux density: 

 Phonons in crystalline and polycrystalline materials 
o Single crystals of exotic new materials often available only in small size (10-4 ~ 10-6 

mm3) 

 Phonon and vibration dynamics of surfaces and interfaces and systems 

under extreme pressure 
o Sample volume is limited in these cases. 

MgB2 

Size: ~ 400 x 400 x 40 µm3 

http://upload.wikimedia.org/wikipedia/commons/2/27/Lattice_wave.svg


Lipid Membrane Dynamics 
Key relevant biological processes to be studied 

 

 

 

 

 

 
 Lipid and protein diffusion and transport;  
 Protein-protein, protein-lipid interaction;  
 Nanoscale dynamics in rafts  

 
 From the measured phonon dispersion with respect to membrane orientation, 

width of quasi-elastic peak and their temperature dependence, one derives 
detailed knowledge of elasticity, relaxation, viscosity, direction of diffusion 
and transportation, binding rigidity of the bi-layers, etc. 

 Comparison with MD simulations: test of force field theories; prediction of 
functional behaviors; and design of engineered biomaterials. 

Strengths of the IXS beamline 
 Sub-meV resolution, sharp tails, high Q resolution comparable to INS. 

 Coherent x-ray scattering on collective modes, no need to deuterate the 
samples. 

 Low operation energy and small focus optimized for low-Z materials. 

Protein-protein interaction in membranes 

(Rheinstädter et al, 2009, Phys. Rev. Lett.) 

Gel phase 

Fluid phase 

Liquid ordered phase 

(Courtesy of M. Rheinstädter) 

(Rheinstädter et al, Phys. Rev. Lett., 2004) 



Light Elements under Extreme Environments 
One of Holy Grails in high P-T research 
• Vibrational and fluid dynamics of light elements (H, Li and Na)  

• Intra- and intermolecular vibrations provides direct and sensitive information on 

the state of bonding and changes under extreme pressure and temperature. 

Strengths of the IXS beamline 
• IXS allows to map out the dispersion, whereas IR has access only to zone-center 

vibrons. The results will be a critical test of the pressure effect on vibron 

dispersion which has been deduced only from theories. 

• The experiment is expected to shield new light on the many exotic properties of 

these systems, including the tantalizing I-M transition. Figure 1 Brief Caption (a few 
words) 

- Dave Mao (Carnegie) 

Vibron dispersion and bandwidth of 
hcp solid hydrogen as a function of 
pressure as determined by IR.  

(Eggert, Mao, Hemley, PRL 1993) 



Summary 
 Inelastic x-ray scattering can probe many of the important 

excitations in condensed matter over the relevant (ω, Q) 
space, and can be applied readily to studies under various 
extreme conditions. 

 Count rate estimate for 1 meV resolution indicates better 
performance for low-Z materials in general, and for HP 
systems in particular, with substantial signal gain compared 
to state-of-the-art optics operating at 1 meV, and much 
enhanced contrast due to sharp resolution tails. 

 Science programs should take advantage of the lower 
operating energy! 
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